Abstract

Transrectal ultrasonography (US)-guided biopsy is the standard approach for histopathologic diagnosis of prostate cancer. However, this technique has multiple limitations owing to the operator's inability in most cases to directly visualize and target prostate lesions. Magnetic resonance (MR) imaging of the prostate overcomes many of these limitations by directly depicting areas of abnormality and allowing targeted biopsies. Accuracy in the detection of prostate cancer is improved by the combined use of standard T2-weighted MR imaging and advanced MR imaging techniques such as diffusion-weighted imaging, dynamic contrast-enhanced imaging, and MR spectroscopy. Suspicious-appearing regions of the prostate seen on MR images can be targeted at real-time transrectal US-guided biopsy to improve the diagnostic yield. MR imaging also can be performed for real-time guidance of transrectal prostate biopsy. Studies among patients who underwent at least one transrectal US-guided biopsy with a negative result before undergoing an MR imaging-guided biopsy showed improved detection rates with MR imaging-guided biopsy in comparison with the detection rates achieved with a repeat transrectal US-guided biopsy; however, MR imaging-guided biopsy is a more time-consuming procedure. A technique known as fused MR imaging- and transrectal US-guided biopsy, which relies on the coregistration of previously acquired MR images with real-time transrectal US images acquired during the procedure, shows promise but is limited by deformation of the prostate; this limitation is the subject of ongoing investigation. Another technique that is currently under investigation, MR imaging-guided prostate biopsy with robotic assistance, may one day help improve the accuracy of biopsy needle placement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call