Abstract

The interface of a two-dimensional computer-controlled stepper-motor-driven microscope stage with an infrared microspectroscopy system is explained in terms of its usefulness in performing microscopic imaging. Images are obtained by reducing spatially specific infrared spectra to functional group maps. The maps are constructed at a given infrared absorption frequency and are a function of the intensity versus x and y spatial coordinates. The use of the technique is demonstrated through two examples of polymer characterization. Transmittance infrared spectra reduced to five images based on absorptions at 1735, 1241, 1016 (ester functionalities), 1892 (crystalline band), and 908 (vinyl unsaturation) cm−1 show that a polyethylene film contains an inclusion of an acetate-containing material. Reflectance infrared spectra reduced to an image based on a ratio of the absorptions at 1738 cm−1 (ester carbonyl) and 1705 cm−1 (acid carbonyl) show that the streak in a film of an ethylene-acrylic acid/ethylene-methacrylate copolymer blend on aluminum foil contains more of the ester component of the blend.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.