Abstract

3045 Background: The development of strategies to monitor the molecular and cellular response to novel agents that target the cell cycle is vital to provide proof of mechanism and biological activity of these compounds. The protein kinase CHK1 is activated following DNA damage in the S and G2-phases of the cell cycle and mediates cell cycle arrest. In vitro studies demonstrate that inhibition of CHK1 can overcome cell cycle arrest induced by DNA damage and enhance cytotoxic activity of DNA damaging agents. In vivo studies show that combining DNA damaging agents with a CHK1 inhibitor potentiates antitumor activity. We hypothesize that functional imaging with 18F-fluorine-L-thymidine (FLT), a PET-tracer where tumor uptake is maximal in the S and G2 phases of the cell cycle can be used to non-invasively monitor the induction and therapeutic inhibition of a cell cycle checkpoint in vivo. Methods: Nude mice harbouring PC-3 xenografts were treated with vehicle controls, gemcitabine, the CHK1-inhibitor PF-477736 or gemcitabine + PF-477736. FLT-PET scans were performed and tumors harvested for ex-vivo biomarkers to assess S-phase, M-phase and DNA-repair. Results: Gemcitabine induced a 8.3 ±0.8 fold increase in tumoral uptake of FLT at 21 hours that correlated with a 3.3 ±0.2-fold increase in thymidine kinase activity and S-phase arrest as demonstrated by BrdU incorporation and elevated expression of cyclin-A. Treatment with PF-477736 at 17 hours after gemcitabine abrogated the early FLT-flare at 21 hours by 82% (p<0.001). This was associated with both an increased fraction of cells in mitosis and G1-phase of the cell cycle as determined by phos-histone H3 and flow cytometry. Furthermore, the combination of gemcitabine and PF-477736 enhanced DNA damage as measured by phos-gamma-H2AX and significantly delayed tumor growth when compared to tumors treated with gemcitabine alone. Conclusion: These data clearly indicate that the CHK1-inhibitor PF-477736 can overcome the cell cycle checkpoint induced by gemcitabine and increase associated DNA damage in tumors in-vivo. The PET studies indicate that functional imaging with FLT-PET is a promising strategy to monitor responses to therapeutic agents that target cell cycle checkpoints. [Table: see text]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call