Abstract

Imaging of object structures using cylindrical vector beams in an aplanatic solid immersion lens (SIL) microscope is investigated. Based on a complete optical model of an aplanatic SIL microscope, images of some object structures using radial polarization, azimuthal polarization, and azimuthal vortex beams are simulated. Some interesting imaging effects of these object structures are observed. For example, counterintuitively, it is found that, compared to linear and circular polarizations, radial polarization requires a larger pinhole to acquire a good image and resolution. Similarly, it is shown that an azimuthal vortex beam provides good images for a variety of object structures and pinhole sizes. Theories and explanations are provided to justify the observed effects. The presented results play an important role in high-numerical-aperture optical imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call