Abstract

This article deals with the study of ultrasound propagation, which propagates the mechanical vibration of the molecules or of the particles of a material. It measures the speed of sound in air. For this reason, the third-order non-linear model of the Westervelt equation was chosen to be studied, as the solutions to such problems have much importance for physical purposes. In this article, we discuss the exact solitary wave solutions of the third-order non-linear model of the Westervelt equation for an acoustic pressure p representing the equation of ultrasound with high intensity, as used in acoustic tomography. Moreover, the non-linear coefficient B/A (being a part of space-dependent coefficient K), has also been investigated in this literature. This problem is solved using the Generalized Kudryashov method along with a comparison of the Modified Kudryashov method. All of the solutions have been discussed with both surface and contour plots, which shows the behavior of the solution. The images are prepared in a well-established way, showing the production of tissues inside the human body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.