Abstract

A growing body of in vitro evidence links alterations of the intermediary metabolism in cancer to treatment outcome. This study aimed to characterize tumor oxidative metabolism and perfusion in vivo using dynamic positron emission tomography (PET) with 1- [(11)C]-acetate (ACE) during radiotherapy. Nine patients with head-and-neck cancer were studied. Oxidative metabolic rate (k(mono)) and perfusion (rF) of the primary tumors were assessed by dynamic ACE-PET at baseline and after 15, 30, and 55 Gy was delivered. Tumor glucose uptake (Tglu) was evaluated with [(18)F]-fluorodeoxyglucose PET at baseline. Patients were grouped into complete (CR, n = 6) and partial responders (PR, n = 3) to radiotherapy. The 3 PR patients died within a median follow-up period of 33 months. Baseline k(mono) was almost twice as high in CR as in PR (p = 0.02) and Tglu was lower in CR than in PR (p = 0.04). k(mono) increased during radiotherapy in PR (p = 0.004) but remained unchanged in CR. There were no differences in rF between CR and PR at any dosage. k(mono) and rF were coupled in CR (p = 0.001), but not in PR. This study shows that radiosensitive tumors might rely predominantly on oxidative metabolism for their bioenergetic needs. The impairment of oxidative metabolism in radioresistant tumors is potentially reversible, suggesting that therapies targeting the intermediary metabolism might improve treatment outcome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.