Abstract

Over the past five years, new developments in the field of plasmonics have emerged with the goal of finely tuning a variety of metallic nanostructures to enable a desired function. The use of plasmonics in spectroscopy is of course of great interest, due to large local enhancements in the optical near field confined in the vicinity of a metal nanostructure. For a given metal, such enhancements are dependent on the shape of the structure as well as the optical properties (wavelength, phase, polarization) of the impinging light, offering a large degree of control over the optical and spatial localization of the plasmon resonance. In this focal point, we highlight recent work that aims at revealing the spatial position of the localized plasmon resonances using a variety of optical and non-optical methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.