Abstract
Improved understanding of the processes involved in infarct healing is required for identification of novel therapeutic targets to limit infarct expansion and consequent long-term ventricular remodelling after myocardial infarction. Infarct healing can be modelled effectively in murine models of coronary artery ligation. While imaging the murine heart is challenging due to its size and high rate of contraction, advances in preclinical imaging now permit accurate assessment of myocardial structure and function in vivo after myocardial infarction. Furthermore, rapid development of a range of molecular probes for use in a number of imaging modalities allows more detailed in vivo analysis of processes, including inflammation, fibrosis and angiogenesis. Here we consider the practical application of in vivo imaging by magnetic resonance imaging, ultrasound and fluorescence molecular tomography for assessment of infarct healing in the mouse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.