Abstract
Receptor for advanced glycation endproducts (RAGE) expression contributes to the impaired angiogenic response to limb ischemia in diabetes. The aim of this study was to detect the effect of increased expression of RAGE on the angiogenic response to limb ischemia in diabetes by targeting αvβ3 integrin with 99mTc-labeled Arg-Gly-Asp (RGD). Male wild-type (WT) C57BL/6 mice were either made diabetic or left as control for 2 months when they underwent femoral artery ligation. Four groups were studied at days 3 to 7 after ligation: WT without diabetes (NDM) (n = 14), WT with diabetes (DM) (n = 14), RAGE-/- NDM (n = 16), and RAGE-/- DM (n = 14). Mice were injected with 99mTc-HYNIC-RGD and imaged. Count ratios for ischemic/non-ischemic limbs were measured. Muscle was stained for RAGE, αvβ3, and lectins. There was no difference in count ratio between RAGE-/- and WT NDM groups. Mean count ratio was lower for WT DM (1.38 ± 0.26) vs. WT NDM (1.91 ± 0.34) (P<0.001). Mean count ratio was lower for the RAGE-/- DM group than for RAGE-/- NDM group (1.75 ± 0.22 vs. 2.02 ± 0.29) (P<0.001) and higher than for the WT DM group (P<0.001). Immunohistopathology supported the scan findings. In vivo imaging of αvβ3 integrin can detect the effect of RAGE on the angiogenic response to limb ischemia in diabetes.
Highlights
Receptor for advanced glycation endproducts (RAGE) expression contributes to the impaired angiogenic response to limb ischemia in diabetes
We investigated the value of imaging the effects of RAGE expression on the angiogenic response to limb ischemia in live animals
The mean value for the RAGE-/- diabetic group was 1.75 ± 0.22 which was significantly lower than the RAGE-/non-diabetic group (P < 0.001) and was significantly higher than the WT diabetic group (P < 0.001)
Summary
Receptor for advanced glycation endproducts (RAGE) expression contributes to the impaired angiogenic response to limb ischemia in diabetes. The aim of this study was to detect the effect of increased expression of RAGE on the angiogenic response to limb ischemia in diabetes by targeting avb integrin with 99mTc-labeled Arg-Gly-Asp (RGD). Limb ischemia in diabetics takes a malignant course leading to impaired wound healing, gangrene, amputations, and even death [1,2]. A major and distinct adaptive process that contributes to restoring nutrient blood flow to ischemic limbs is angiogenesis/arteriogenesis. Angiogenesis refers to the process of endothelial sprouting. Arteriogenesis is the formation of larger “arteriole” like vessels. Both processes are essential for the development of subsequent collateral growth [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.