Abstract

In this paper, a new pharmaceutical cocrystal was synthesized using apigenin (AP) and pharmaceutically acceptable conformer nicotinamide (Nico), and the drug delivery between AP-Nico pharmaceutical cocrystal and human serum albumin (HSA) in vivo was studied at atomic scale. The pharmaceutical cocrystal was characterized using Fourier-transform infrared (FTIR) spectroscopy, 1H NMR spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD), and the self-assembling mechanism was explored. The dissolution and cumulative release in vitro were investigated. Molecular dynamic (MD) simulation combined with fluorescence spectroscopy was used to study the delivery mechanism of AP-Nico to HSA. The results showed that AP was pharmaceutically cocrystallized with Nico, which formed a pharmaceutical cocrystal mainly through hydrogen interaction between the -OH groups of AP and -NH2 groups of Nico. The solubility of the AP-Nico was 3 times higher than raw AP and the cumulative release rate was 71%. The fluorescence spectroscopy results showed that the AP-Nico pharmaceutical cocrystal bind with Sudlow's site I inside the HSA molecule with hydrogen-bond interaction as the main force. The Sudlow's site I of HSA conjugated with AP-Nico explains the conformational changes of HSA in-silico. This study provided a useful reference for synthesizing flavonoid pharmaceutical cocrystal to improve solubility and exploring the interaction mechanism while understanding its delivery mechanism in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call