Abstract

The charge transfer reaction of Ar+ with H2 and D2 has been investigated in an experiment combining crossed beams with three-dimensional velocity map imaging. Angle-differential cross sections for two collision energies have been obtained for both neutral species. We find that the product ions are highly internally excited. In the reaction with H2, the spin-orbit excited Ar+ state's coupling to the "resonant" vibrationally excited product H2+ (υ = 2) dominates for both investigated energies, in line with previous investigations. The observed angular distributions, however, show significantly less back-scattering than was found previously. Furthermore, we discovered that the product ions are highly rotationally excited. In the case of Ar+ reacting with D2, the energetically closest lying vibrational levels are not strictly preferred and higher-lying vibrational levels are also populated. For both species, the backward-scattered products show higher internal excitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call