Abstract
Advances in molecular-genetic tools for labeling neuronal subtypes, and the emerging development of robust genetic probes for neural activity, are likely to revolutionize our understanding of the functional organization of neural circuits. In principle, these tools should be able to detect activity at cellular resolution for large ensembles of identified neuron types as they participate in specific behaviors. This report describes the use of genetically encoded calcium indicators (GECIs), combined with two-photon microscopy, to characterize V1 interneurons, known to be critical for setting the duration of the step cycle. All V1 interneurons arise from a common precursor population and express engrailed-1 (En1). Our data show that although neighboring interneurons that arise from the same developmental lineage and share many features, such as projection patterns and neurotransmitter profiles, they are not irrevocably committed to having the same pattern of activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.