Abstract

Over the last 2 years there has been a dramatic increase in the number of bioscience laboratories using wavelength dispersive spectroscopy to study in vivo, in situ fluorescence. Transforming spectral information into an image provides a graphic means of mapping localized ionic, molecular, and protein-protein interactions. Spectroscopy also enables fluorophores with overlapping spectral features to be delineation. In this study, we provide the tools that a researcher needs to put into perspective instrumental contributions to a reported spectrum in order to gain greater understanding of the natural emission of the sample. We also show how to deduce the basic capabilities of a spectral confocal system. Finally, we show how to determine the true spectral bandwidth of an object, the illuminated area of a laser-excited object, and what is needed to optimize light throughput.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.