Abstract

Imaging of biomolecules guides our understanding of their diverse structures and functions1,2. Real-space imaging at sub-nanometre resolution using cryo-electron microscopy has provided key insights into proteins and their assemblies3,4. Direct molecular imaging of glycans-the predominant biopolymers on Earth, with a plethora of structural and biological functions5-has not been possible so far6. The inherent glycan complexity and backbone flexibility require single-molecule approaches for real-space imaging. At present, glycan characterization often relies on a combination of mass spectrometry and nuclear magnetic resonance imaging to provide insights into size, sequence, branching and connectivity, and therefore requires structure reconstruction from indirect information7-9. Here we show direct imaging of single glycan molecules that are isolated by mass-selective, soft-landing electrospray ion beam deposition and imaged by low-temperature scanning tunnelling microscopy10. The sub-nanometre resolution of the technique enables the visualization of glycan connectivity and discrimination between regioisomers. Direct glycan imaging is an important step towards a better understanding of the structure of carbohydrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.