Abstract

Characterization of micro/nano-textured surfaces is time consuming using scanning probe and electron microscopy techniques. Scatterometry, where the intensity of scattered light is used as a 'fingerprint' to reconstruct a surface, is a fast and robust method for characterization of gratings. However, most scatterometry techniques are measuring the averaged signal over an area equal to the spot size of the light source. In this paper we present the imaging scatterometry technique, which is capable of locally measuring topographic parameters of gratings spanning an area down to a few µm(2) with nm accuracy. The imaging scatterometer can easily find areas of interest on the cm scale and measure multiple segments simultaneously. We demonstrate two imaging scatterometers, one built into an optical microscope and one in a split configuration. The two scatterometers are targeted characterization of mm(2) and cm(2) areas, respectively, and both setups are validated using nano-textured samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.