Abstract

For multidimensional band-limited functions, the Nyquist density is defined as that density corresponding to maximally packed spectral replications. Because of the shape of the support of the spectrum, however, sampling multidimensional functions at Nyquist densities can leave gaps among these replications. In this paper we show that, when such gaps exist, the image samples can periodically be deleted or decimated without information loss. The result is an overall lower sampling density. Recovery of the decimated samples by the remaining samples is a linear interpolation process. The interpolation kernels can generally be obtained in closed form. The interpolation noise level resulting from noisy data is related to the decimation geometry. The greater the clustering of the decimated samples, the higher the interpolation noise level is.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.