Abstract

We have tested the performance of 3D shot-profile depth migration using explicit migration operators on a real 3D marine data set. The data were acquired offshore Norway in an area with a complex subsurface containing large salt bodies. We compared shot-profile migration using explicit migration operators with conventional Kirchhoff migration, split-step Fourier migration, and common-azimuth by generalized screen propagator (GSP) migration in terms of quality and computational cost. Image quality produced by the explicit migration operator approach is slightly better than with split-step Fourier migration and clearly better than in common-azimuth by GSP and Kirchhoff migrations. The main differences are fewer artifacts and better-suppressed noise within the salt bodies. Kirchhoff migration shows considerable artifacts (migration smiles) within and close to the salt bodies, which are not present in images produced by the other three wave-equation methods. Expressions for computational cost were developed for all four migration algorithms in terms of frequency content and acquisition parameters. For comparable frequency content, migration cost using explicit operators is four times the cost of the split-step Fourier method, up to 260 times the cost of common-azimuth by GSP migration, and 25 times the cost of Kirchhoff migration. Our results show that in terms of image quality, shot-profile migration using explicit migration operators is well suited for imaging in areas with complex geology and significant velocity changes. However, computational cost of the method is high and makes it less attractive in terms of efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call