Abstract
Recently, deep learning (DL) has shown great potential in complex wavefront retrieval (CWR). However, the application of DL in CWR does not match well with the physical diffraction process. The state-of-the-art DL-based CWR methods crop full-size diffraction patterns down to a smaller size to save computational resources. However, cropping reduces the space-bandwidth product (SBP). In order to solve the trade-off between computational resources and SBP, we propose an imaging process matched neural network (IPMnet). IPMnet accepts full-size diffraction patterns with a larger SBP as inputs and retrieves a higher resolution and a larger field of view of the complex wavefront. We verify the effectiveness of the proposed IPMnet through simulations and experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.