Abstract

As a measuring technique, owing to its high throughput and multichannel advantages, interference imaging spectroscopy is widely used in many fields. This technique can be classified as temporally modulated Fourier transform spectrometer (TMFTS) and spatially modulated Fourier transform spectrometer (SMFTS). In contrast to TMFTS-based instruments, instruments using SMFTS are more stable, simple, and compact. In spectrometry, improvements of the spectral resolution and the optical throughput are always the focus points. A new static Fourier-transform imaging spectrometer based on the use of Wollaston prisms is presented. The novelty of this work comes from the use of a longer optical path difference, which provides higher spectral resolution. The principle and the system configuration are described. An experimental system based on the Wollaston prisms has been built and preliminary imaging spectroscopy experiments have been performed with it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call