Abstract

Phosphorylation plays vital roles in complex biological processes such as cellular growth, division and signaling transduction. However, due to the low ionization efficiency of phosphorylated peptides, it is still a huge challenge to obtain region-specific phosphorylated peptide distribution by imaging mass spectrometry. To achieve the on-tissue analysis of phosphorylated peptides, we took advantage of a graphene oxide-immobilized enzyme reactor to conduct the in situ digestion, followed by dephosphorylation treatment that removed the phosphate groups and thereby helped to improve the signal intensity of phosphorylated peptides. A visual representation of the phosphoproteome of a human lens was successfully mapped. Results showed that phosphorylated peptides localized mainly in the nucleus region of a healthy lens while the outer cortex is the dominant region for phosphorylated peptides of a cataractous lens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.