Abstract
.Significance: A scene-based adaptive-optics (AO) system is developed and a method for investigating its imaging performance is proposed. The system enables derivation of Strehl ratios from observed images via collaboration with computer simulations. The resultant Strehl ratios are comparable with those of other current AO systems.Aim: For versatile and noninvasive AO microscopy, a scene-based wavefront-sensing technique working on a Shack–Hartmann wavefront sensor is developed in a modal control system. The purpose of the research is to clarify the imaging performance of the AO system via the derivation of Strehl ratios from observed images toward applications in microscopy of living cells and tissues.Approach: Two imaging metrics that can be directly measured from observed images (i.e., an energy concentration ratio and unbiased maximum ratio) are defined and related to the Strehl ratio via computer simulations. Experiments are conducted using artificial targets to measure the imaging metrics, which are then converted to Strehl ratios.Results: The resultant Strehl ratios are and 0.5 in the cases of defocus and higher aberrations, respectively. The half-widths at half-maximum of the AO-corrected bead images are favorably comparable to those of on-focus images under simple defocus aberration, and the AO system works both under bright-field illumination and on fluorescent bead images.Conclusions: The proposed scene-based AO system is expected to work with a Strehl ratio of more than 0.5 when applied to high-resolution live imaging of cells and tissues under bright-field and fluorescence microscopies.
Highlights
In biological microscopic observations, complex structures in the observation targets can result in wavefront errors
The proposed scene-based Adaptive optics (AO) system is expected to work with a Strehl ratio of more than 0.5 when applied to high-resolution live imaging of cells and tissues under bright-field and fluorescence microscopies
A number of pioneering AO systems for microscopy have adopted indirect methods of phase-error measurement, including methods that use image metrics, and these have been successfully employed in biological applications.[4]
Summary
The resultant Strehl ratios are >0.7 and 0.5 in the cases of defocus and higher aberrations, respectively. The half-widths at half-maximum of the AO-corrected bead images are favorably comparable to those of on-focus images under simple defocus aberration, and the AO system works both under bright-field illumination and on fluorescent bead images
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.