Abstract
Imaging the changes associated with the pathology of Parkinson's disease (PD) broadly falls into two categories: (1) detecting alterations in brain structure; and (2) examining functional changes in brain metabolism and receptor availability. Using high-field magnetic resonance imaging (MRI), brain structural changes can be evidenced as regional or whole-brain reductions in volume, signal alterations in water relaxation, water diffusion (diffusion-weighted or tensor imaging), and magnetization transfer coefficients. Transcranial ultrasonography can detect structural midbrain changes in parkinsonian disorders, manifested as hyperechogenicity. Functional imaging (positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), and proton magnetic resonance spectroscopy (MRS)) provide a means of detecting and characterizing the regional changes in brain metabolism and receptor binding associated with parkinsonian disorders. PET allows quantitative in vivo examination of alterations in regional cerebral blood flow (rCBF), glucose, oxygen and dopa metabolism, and brain receptor binding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.