Abstract

The Pannonian depression is an extensional back-arc basin in central Europe and is an integral part of the Alpine–Carpathian orogenic mountain belts. It can be characterized by thinned lower crust, shallow Moho discontinuity, high surface heat flow and Moho temperature, implying recent active tectonic processes. Imaging the velocity structure of the upper mantle may help us to better understand the structure and formation of the Pannonian region. In this paper, P n traveltimes from regional earthquakes are used to tomographically image the lateral velocity variations in the uppermost mantle beneath the Pannonian basin. The set of linear tomographic equations, built up of the time term equation for each source–receiver pair, is solved by a truncated singular value decomposition algorithm. The explicit computation of the generalized inverse of the tomographic equations makes it possible to deduce both the resolution matrix and the model covariance matrix, allowing us to estimate the resolution and reliability of the solution. The mean compressional wave velocity in the uppermost mantle beneath the Pannonian basin is 7.9 km/s, substantially lower than the average continental P n velocity of 8.1 km/s. It is mostly due to the high Moho temperature having values on average 400–500 °C more than those in the surrounding areas. The velocity anomalies range from −0.3 to 0.3 km/s relative to the mean velocity of 7.9 km/s. Due to high Moho temperature, below the North Hungarian range low (7.6–7.7 km/s) velocities can be found. High-velocity anomalies of around 8.1 km/s can be detected along the W-SW boundaries of Hungary and at the junction of the Pannonian basin and the Southern Carpathians. The Great Hungarian Plain shows average (7.9 km/s) P n velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.