Abstract
Near infrared autofluorescence (NIRAF) can guide intraoperative parathyroid gland (PG) identification. NIRAF detection devices typically rely on imaging and fiber probe-based approaches. Imaging modalities provide NIRAF pictures on adjacent display monitors, and fiber probe-based systems measure tissue NIRAF and provide real-time quantitative information to objectively aid PG identification. Both device types recently gained FDA approval for PG identification but have never been compared directly. Patients undergoing thyroidectomy and/or parathyroidectomy were recruited prospectively. Target tissues were intraoperatively visualized with PDE-Neo II (imaging-based) and concurrently assessed with PTeye (fiber probe-based). For PDE-Neo II, NIRAF images were collected from in situ or excised tissues, alongside the surgeon's interpretation of visualized tissues, and retrospectively analyzed in a blinded fashion. The PTeye was concomitantly used to record NIRAF intensities and ratios from the same tissues in real time. Twenty patients were enrolled for concurrent evaluation with both systems, which included 33 PGs and 19 nonparathyroid sites. NIRAF imaging demonstrated 90.9% sensitivity, 73.7% specificity, and 84.6% accuracy for PG identification when interpreted in real time by the surgeon compared with 81.8% sensitivity, 73.7% specificity, and 78.8% accuracy where images were quantitatively analyzed post hoc by an independent observer. In parallel, NIRAF detection with PTeye yielded 97.0% sensitivity, 84.2% specificity, and 92.3% accuracy in real time for the same specimens. Both NIRAF-based systems were beneficial for identifying PGs intraoperatively. Although NIRAF imaging provides valuable spatial information to localize PGs, NIRAF detection with fiber probe provides real-time quantitative information to identify PGs in presence of ambient room lights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.