Abstract

Electron correlation is one of the main frontiers of modern science and of fundamental importance to such diverse fields as, e.g., many body systems, superconductivity and quantum computing. At the ultrafast laser frontier electron correlation has found prominence in the dramatic enhancement of multiple ionization [1] and high harmonic generation [2]. The underlying mechanism, called recollision [3], forms the foundation of attosecond science. However, above a certain threshold intensity the laser field-electron coupling dominates electron correlation and recollision is no longer important. Hence, electron correlation was assumed to be restricted to lower laser intensities. Only recently experimental evidence has corroborated the notion that the creation of a continuum electron wave packet by laser pulses often entails a correlated electronic hole wave packet in the ion in particular at those higher laser intensities [4–7].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.