Abstract

We describe the theory of imaging by degenerate four-wave mixing (DFWM) using a standard diffraction theory of imaging by coherent light. We demonstrate that, even with the phase-conjugating geometry, no aberration correction can be achieved by DFWM imaging. We demonstrate the coherent nature of DFWM image formation using spatially modulated signals generated in flame OH in the phase-conjugating geometry. The intensity distribution in the Fourier plane of a telecentric lens system is shown to be the spatial Fourier transform of the object distribution characteristic of coherent imaging. The brightness of the DFWM signals exceeds that of similar laser-induced fluorescence signals that can be discriminated by restricting the aperture of the imaging system while still allowing a spatial resolution of approximately 70 ?m. DFWM imaging with the forward-folded boxcars geometry is demonstrated and used in a simple referencing scheme to compensate for structure on the images imposed by nonuniformity of the laser beams employed. Images formed in NO are used to illustrate that structure on a scale of less than 100 ?m arising from beam inhomogeneity can be removed by this referencing technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.