Abstract

AbstractScanning electron acoustic microscopy is a new technique for imaging the thermal and elastic properties of surfaces and detecting subsurface flaws. It can be carried out in a modified scanning electron microscope. The effects of electron beam energy and phase angle on scanning electron acoustic images of the thermal and elastic properties of surfaces were studied with an alumina fiber/aluminum matrix composite for fiber directions both transverse and coaxial to the surface. Images produced with 10‐ and 30‐keV electrons at beam modulation frequencies of 80–1200 kHz appeared to be identical, with the exception of a lower signal‐to‐noise ratio for the lower electron energy. This observation suggests that the energy input from the beam can be considered to occur at the surface for electron energies below 30 keV and frequencies below 1200 kHz. Images recorded at 0° phase angle mapped regions of different thermal and elastic properties. Images recorded at 90° phase angle highlighted the boundaries between such regions. Scanning electron acoustic microscopy can image features of different thermal and elastic properties at greater depth than traditional imaging with backscattered electrons. The practical application of the technique to the study of surfaces is illustrated by the imaging of grain structure and subsurface particles for an extruder barrel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call