Abstract

Structural changes of the pulmonary circulation during the pathogenesis of pulmonary arterial hypertension remain to be fully elucidated. Although angiography has been used for visualizing the pulmonary circulation, conventional angiography systems have considerable limitations for visualizing small microvessels (diameters < 200 microm), particularly within a closed-chest animal model. In this study we assess the effectiveness of monochromatic synchrotron radiation (SR) for microangiography of the pulmonary circulation in the intact-chest rat. Male adult Sprague-Dawley rats were anesthetized, and a catheter was positioned within the right ventricle, for administering iodinated contrast agent (Iomeron 350). Subsequently, microangiography of pulmonary arterial branches within the left lung was performed using monochromatic SR. Additionally, we assessed dynamic changes in vessel diameter during acute hypoxic (10% and 8% O2 for 4 min each) pulmonary vasoconstriction (HPV). Using SR we were able to visualize pulmonary microvessels with a diameter of <100 microm (the 4th generation of branching from the left axial artery). Acute hypoxia caused a significant decrease in the diameter of all vessels less than 500 microm. The greatest degree of pulmonary vasoconstriction was observed in vessels with a diameter between 200 and 300 microm. These results demonstrate the effectiveness of SR for visualizing pulmonary vessels in a closed-chest rat model and for assessing dynamic changes associated with HPV. More importantly, these observations implicate SR as an effective tool in future research for assessing gross structural changes associated with the pathogenesis of pulmonary arterial hypertension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.