Abstract

AbstractSpatial distribution of superficial blood vessels in human skin in vivo has been observed by using the double correlation Optical Coherence Tomography (OCT). To remove background noise, reduce the artifacts associated with patient motions and to increase the overall quality of the experimental OCT images an adaptive Wiener filtering technique has been employed. Fourier domain correlation has been subsequently applied to enhance spatial resolution of images of vascular network in human skin in vivo. Image processing has been performed on Graphics Processing Units (GPUs) utilizing Compute Unified Device Architecture (CUDA) framework in the frequency‐domain. This approach allows carrying out image processing in parallel significantly speeding up the computations. The presented results show that the double correlation method permits obtaining 2D/3D OCT images of subcutaneous microcirculation vascular network and its spatial distribution within the human skin with higher spatial resolution compare to the other OCT correlation‐based techniques developed earlier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.