Abstract

With the IMS 4F, a scanning ion microscope and mass spectrometer (SIMS), it is possible to map chemical elements with a lateral resolution of about 250 nm over a field of view of 50 × 50 μm 2. Such conditions should enable the imaging of subcellular structures with constitutive ionic species such as CN −, P −, S −. The study was performed on heart and renal tissues prepared either by chemical procedure or cryofixation-freeze substitution (CF-FS) prior to embedding. Heart tissue was chosen because cardiocytes display a simple structural organization whereas the structural organization of kidney tubular cells is more complex. Whatever the preparation procedure, nuclei were easily identified due to their high P − content. The CN −, P −, and S − ion images obtained on heart and renal tissues prepared by chemical procedure showed weak contrasts inside the cytoplasm so that it was difficult to recognize the organelles. After CF-FS, enhanced contrasted images allow organelle (mitochondria, myofibrils, lysosomes, vacuoles, basal lamina, etc) characterization. This work demonstrated that CF-FS is a more suitable preparation procedure than chemical method to reveal organelle structures by their chemical composition. The improvements in the imaging of these structures is an essential step to establish the correlation between the localization of a trace element (or a molecule tagged with isotopes or particular atoms) and its subcellular targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.