Abstract

Breast cancer is the second leading cause of cancer-related death in women. Approximately 85% of patients with advanced cases will develop spinal metastases. The vertebral column is the most common site of breast cancer metastases, where overexpression of matrix metalloproteinases (MMPs) promotes the spread of cancer. Current therapies have significant limitations due to the high associated risk of damaging the spinal cord. An attractive alternative is photodynamic therapy providing noninvasive and site-selective treatment. However, current photosensitizers are limited by their nonspecific accumulation. Photodynamic molecular beacons (PP(MMP)B), activated by MMPs, offer another level of PDT selectivity and image-guidance preserving criticial tissues, specifically the spinal cord. Metastatic human breast carcinoma cells, MT-1, were used to model the metastatic behavior of spinal lesions. In vitro and in vivo evidence demonstrates MMP specific activation of PP(MMP)B in MT-1 cells. Using a clinically relevant metastatic model, fluorescent imaging establishes the specific activation of PP(MMP)B by vertebral metastases versus normal tissue (i.e., spinal cord) demonstrating the specificity of these beacons. Here, we validate that the metastasis-selective mechanism of PP(MMP)Bs can specifically image breast cancer vertebral metastases, thereby differentiating tumor and healthy tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.