Abstract

AbstractA contactless high spatial resolution technique has been developed to characterize semiconductor materials using the Near-Field Scanning Optical Microscope. The technique can be used to non-invasively measure: surface topography, defect content, and carrier lifetime variations in silicon. The success of the technique relies on the sensitive detection of changes in infrared transmission induced by local generation of free carriers using pulsed visible radiation. Here we extend the application of this technique to characterize silicon on insulator materials. We also include computer simulation results to address the role played by diffusion in the ultimate lateral resolution that can be achieved using this technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.