Abstract
Numerical simulations are carried out for the dynamic rupture and wave propagation process of the 24th August 2016 ML 6.0 Amatrice, Italy, earthquake, using a boundary domain method (BDM), a hybrid method of boundary integral equation and finite difference methods. Dynamic rupture parameters of two seismogenic asperities are searched by iterative search through the comparison of the near-field ground motions. The preferred models indicate two asperities, aligned at around 4–5 km depth and separated from each other as well as from the initial rupture point. This requires a few supplementary patches connecting them, and that are less energetic than the asperities. The asperities are characterized by a radius of 2–3 km in the south (first to rupture) and of 2–4 km in the north (second to rupture), and the corresponding fracture energies of the asperities are (25.35 ± 0.63) × 1012 J and (38.05 ± 7.91) × 1012 J, respectively. These values are consistent with the scaling relation extrapolated from various analyses of large earthquakes. Although the parameter space of the search is limited due to the numerical performance of the dynamic rupture simulation, the proposed simple characterization of the earthquakes source confirms the scaling relation in fracture energy of the seismogenic asperities, which is essential for constructing mechanical earthquake source models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.