Abstract

Clinical investigations of peripheral nerve lesions routinely involve nerve conduction studies and electromyography. Imaging studies are often used to exclude focal mass lesions or external compression and to visualize muscle atrophy. More recently, it has been recognized that magnetic resonance imaging can identify changes in peripheral nerves and secondary neurogenic alterations in skeletal muscle, which may significantly enhance its use in the differential diagnosis of peripheral nerve disease. Acute axonal nerve lesions cause a hyperintense signal on T2-weighted images at and distal to the lesion site, which correlates with Wallerian degeneration and nerve oedema. Superparamagnetic iron oxide particles provide an exciting new tool to detect the invasion of macrophages into the degenerating nerve distal to an axonal lesion. Prolongation of the T2 relaxation time and gadolinium enhancement of denervated muscle develop in parallel to the development of spontaneous activity on electromyography, and are probably the consequence of capillary enlargement and increased muscular blood volume. Magnetic resonance imaging supplements the differential diagnosis of peripheral nerve disease. An advantage over clinical neurophysiological investigations is that it is operator independent and painless. It can identify axonal damage and may thus help to identify a lesion site precisely, where fractionated nerve conduction studies are not applicable. Novel contrast media may potentially be used to detect pathophysiologically relevant mechanisms such as infiltration of the nerve by macrophages. Magnetic resonance imaging also has the advantage of providing a lasting detailed topographical picture of regional variations and avoids localization errors of muscles in electromyography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.