Abstract

We used the inositol 1,4,5-trisphosphate (IP3) biosensor, the pleckstrin homology (PH) domain of PLCdelta1 (phospholipase C) tagged with enhanced green fluorescent protein (eGFP-PH(PLCdelta)), to examine muscarinic acetylcholine (mACh) receptor regulation of phospholipase C/IP3 signaling in intact single hippocampal neurons in "real time." Initial experiments produced a pharmacological profile consistent with the presence of a predominant M1 mACh receptor population coupled to the IP3 response. To investigate M1 mACh receptor regulation, neurons were stimulated with approximate EC50 concentrations of the mACh receptor agonist methacholine before (R1) and after (R2) a short (60 sec) exposure to a high concentration of agonist. This resulted in a marked attenuation in the R2 relative to R1 response. Inhibition of endogenous GRK6 (G-protein-coupled receptor kinase) activity, by the introduction of catalytically inactive (K215R)GRK6, partially reversed the attenuation of agonist-induced responsiveness, whereas overexpression of wild-type GRK6 increased receptor desensitization. Manipulation of endogenous GRK2 activity through introduction of either wild-type or catalytically inactive GRK2 ((K220R)GRK2) almost completely inhibited agonist-stimulated IP3 production, implying a phosphorylation-independent regulation of M1 mACh receptor signaling, most probably mediated by a GRK2 N-terminal RGS-like (regulator of G-protein signaling) domain interaction with GTP-bound Galpha(q/11). Together, our data suggest a role for both phosphorylation-dependent and -independent regulation of M1 mACh receptors in hippocampal neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call