Abstract

This work presents a novel approach to visual photon imaging using a single-photon-sensitive camera and PMTs. The aim of this study is to measure and identify muon tracks from 2D images captured by CsI(Tl) crystal scintillator detectors. The proposed approach allows for direct observation of muon tracks with a reasonable signal-to-noise ratio, eliminating the need for additional amplification or external light sources. With further enhancements to the analysis and setup, this algorithm offers an innovative method for particle measurement in low-photon environments and enables precise direction measurement of scintillation detectors. The setup of the crystal and camera testing system, along with the identification algorithm for muon tracks, will be discussed in detail. This will encompass system calibration, the identification model, signal-to-noise ratio analysis, muon track confirmation, and expectations for future improvements and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.