Abstract

A phase-resolved reflection-based near-field scanning optical microscopy (NSOM) technique with an original all-fiber configuration is presented. Our system consists of an intrinsically phase-stable common-path interferometer. The reflection from the waveguide input facet or from an integrated fiber Bragg grating is used as the reference beam. This arrangement effectively suppresses the phase drift caused by environmental fluctuations. By raster scanning a silicon atomic force microscope probe, we measure the complex near fields of the propagating and stationary waves in silicon nanowaveguides. Our robust, align-free, cost-effective, and shot-noise-limited near-field imaging technique paves the way for versatile optical characterizations of nanophotonic structures on a chip.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.