Abstract

Imaging of Gaussian Schell-model sources by general lossless systems is analyzed with an extended ray-transfermatrix method. Algebraic expressions are derived for the location, size, and coherence area of the image waist and for the depth of focus and the far-field diffraction angle. These results are shown to provide a continuous transformation between laser-beam optics and geometrical optics. They also lead naturally to several equivalence and invariance relations pertaining to isotropic and anisotropic Gaussian Schell-model sources. As an application, the importance of effects due to partial spatial coherence in beam focusing is examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.