Abstract

In this paper, a model for radar images of fractal (topologically 1-D) profiles is introduced. A twofold approach is followed: on one hand, we analytically solve the problem whenever small-slope profiles are in order; on the other hand, we present a partly analytical and partly numerical setup to cope with the general-slope case. By means of the analytical approach, we evaluate in closed form both the structure function and the power density spectrum of the radar signal. An appropriately smoothed (physical) fractional Brownian model (fBm) process is employed; its introduction is justified by the finite sensor resolution. A fractal scattering model is employed. It is shown that for a fractal profile modeled as an fBm stochastic process, the backscattered signal turns out to be strictly related to the associated fractional Gaussian noise process if a small-slope regime for the observed profile can be assumed. In the analytical–numerical framework, a profile with prescribed fractal parameters is first synthesized; then, fractal scattering methods (applicable to wider slope regimes with respect to the previous case) are employed to compute the signal backscattered toward the sensor. Finally, the power density spectrum of the acquired radar image is estimated. The obtained spectra are favorably compared with the theoretical results, and a parametric study is performed to assess the overall method behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.