Abstract

ObjectivesAs in-vivo knowledge of training-induced remodeling of intervertebral discs (IVD) is scarce, this study assessed how lumbar IVDs change as a function of long-term training in elite athletes and age-matched controls using compositional Magnetic Resonance Imaging (MRI). DesignProspective case-control study. MethodsProspectively, lumbar spines of 17 elite rowers (ERs) of the German national rowing team (mean age: 23.9 ± 3.3 years) were imaged on a clinical 3.0 T MRI scanner. ERs were imaged twice during the annual training cycle, i.e., at training intensive preseason preparations (t0) and 6 months later during post-competition recovery (t1). Controls (n = 22, mean age: 26.3 ± 1.9 years) were imaged once at corresponding time points (t0: n = 11; t1: n = 11). Segment-wise, the glycosaminoglycan (GAG) content of lumbar IVDs (n = 195) was determined using glycosaminoglycan chemical exchange saturation transfer (gagCEST). Linear mixed models were set up to assess the influence of cohort and other variables on GAG content. ResultsDuring preseason, IVD GAG values of ERs were significantly higher than those of controls (ERs(t0): 2.58 ± 0.27% (mean ± standard deviations); controls(t0): 1.43 ± 0.36%; p ≤ 0.001), while during post-competition recovery, such differences were not present anymore (ERs(t1): 2.11 ± 0.18%; controls(t1): 1.89 ± 0.24%; p = 0.362). ConclusionsProfessional elite-level rowing is transiently associated with significantly higher gagCEST values, which indicate increased lumbar IVD-GAG content and strong remodeling effects in response to training. Beyond professional rowing, core-strengthening full-body exercise may help to enhance the resilience of the lumbar spine as a potential therapeutic target in treating back pain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.