Abstract

We theoretically investigate the photodissociation dynamics of H2+ using the methodology of ultrafast X-ray photoelectron diffraction (UXPD). We use a femtosecond infrared pulse to prompt a coherent excitation from the molecular vibrational state (v = 9) of the electronic ground state (1sσg) and then adopt another time-delayed attosecond X-ray pulse to probe the dynamical properties. We have calculated photoionization momentum distributions by solving the non-Born-Oppenheimer time-dependent Schrödinger equation (TDSE). We unambiguously identify the phenomena associated with the g - u symmetry breakdown in the time-resolved photoelectron diffraction spectra. Using the two-center interference model, we can determine the variation in nuclear spacing with high accuracy. In addition, we use a strong field approximation (SFA) model to interpret the UXPD profile, and the SFA simulations can reproduce the TDSE results in a quantitative way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call