Abstract

Type III collagen is a component of the basement membrane of endothelial cells, and may play a role in the interaction between hemostatic system proteins and the basement membrane of blood vessels. To begin to investigate these structural interactions, we have imaged type III collagen in solution by atomic force microscopy. A 20 microg/ml solution of type III collagen in bicarbonate buffer (pH 9.5) from calf skin was deposited onto a freshly cleaved mica substrate. Atomic force microscopy images were acquired using a fluid cell and tapping mode with oxide-sharpened silicon nitride probes 2, 3, and 4 hours after deposition of the collagen onto the mica. Two-hour preparations displayed fibrillar networks with well-defined sites of nucleation and lateral growth. At 3 and 4 hour polymerizations, more mature fibrils of increasing lengths, diameters, and complexity were observed. Fibrils appeared to be aligning and twisting (helical formation) to form a mature fibril with a higher mass per unit area. Interestingly, the mature fibrils appeared larger centrally with tapered ends displaying declining slopes. These observations compare favorably with those previously published on collagen type I assembly [Gale et al. (1995) Biophys. J. 68:2124-2128]. High resolution atomic force microscopy images of type III collagen in solution should provide a template for observation of the interactions between basement membrane components and hemostatic system proteins present in cardiovascular disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call