Abstract

Overweight and obesity in children and adolescents have become a worldwide public health concern with an ever-increasing prevalence. An excessive accumulation of intraabdominal fat tissue increases the risk of developing insulin resistance, diabetes, and cardiovascular diseases in adulthood. Body composition has a role in metabolism regulation in children and adolescents with differences between genders and age groups. Until recently, Air Displacement Plethysmography and Dual-energy X-ray Absorptiometry (DXA) have been the most common techniques used to assess body composition in children. Ultrasound (US) is an accurate, readily available, and radiation-free technique to quantify intra-abdominal fat in adults, but its use in children has not yet been validated. Computed tomography (CT) is a reliable tool to assess body composition, but its use in children should be avoided due to the significant radiation burden. Quantitative Magnetic Resonance Imaging (qMRI) provides an accurate measurement of body composition, through the quantification of the visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and brown adipose tissue (BAT), as well as lean mass. Furthermore, qMRI provides other significant estimates such as the Proton Density Fat-Fraction of the fat tissue. This review article aims to briefly describe the state of art of the advanced imaging techniques to provide a quantitative assessment of body composition in children and adolescents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.