Abstract
To demonstrate dynamic imaging of a diffusible perfusion tracer, hyperpolarized [(13)C]urea, for regional measurement of blood flow in preclinical cancer models. A pulse sequence using balanced steady state free precession (bSSFP) was developed, with progressively increasing flip angles for efficient sampling of the hyperpolarized magnetization. This allowed temporal and volumetric imaging of the [(13)C]urea signal. Regional signal dynamics were quantified for kidneys and liver, and estimates of relative blood flows were derived from the data. Detailed perfusion simulations were performed to validate the methodology. Significant differences were observed in the signal patterns between normal and cancerous murine hepatic tissues. In particular, a 19% reduction in mean blood flow was observed in tumors, with 26% elevation in the tumor rim. The blood flow maps were also compared with metabolic imaging results with hyperpolarized [1-(13)C]pyruvate. Regional assessment of perfusion is possible by imaging of hyperpolarized [(13)C]urea, which is significant for the imaging of cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.