Abstract
The effect of concentration on anisotropic phase behavior of acid-hydrolyzed cellulose suspensions has been examined using conventional polarizing microscopy and the novel technique of environmental scanning electron microscopy (ESEM). Microcrystalline cellulose dispersed in water formed biphasic suspensions in a narrow concentration range, 4-12 wt % for a suspension pH of 4, where the upper and lower phases were isotropic and anisotropic (chiral nematic), respectively. It is known from previous work that within the biphasic regime total suspension concentration affects only the volume fractions of the two phases, not phase concentration or interfacial packing. As the total suspension concentration surpassed the upper critical limit (c), however, a single anisotropic phase of increasing concentration was observed. It was evident from polarizing microscopy that the chiral nematic pitch of the anisotropic phase decreased with increasing concentration, which has been attributed to a reduction in the electrostatic double layer thickness of the individual rods, thus increasing intermolecular interactions. Chiral nematic textures were also visible using ESEM. This technique has the advantage of studying individual rod orientation within the liquid crystalline phase as it permits the high resolution of electron microscopy to be applied to hydrated samples in their natural state. To our knowledge this is the first time such lyotropic systems have been observed using electron microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.