Abstract

Quasi-periodic pulsations (QPPs) of flaring emission with periods from a few seconds to tens of minutes have been widely detected from radio bands to gamma-ray emissions. However, in the past the spatial information of pulsations could not be utilized well due to the instrument limits. We report here imaging observations of the QPPs in three loop sections during a C1.7 flare with periods of P = 24 s-3 minutes by means of the extreme-ultraviolet 171 angstrom channel of the Atmospheric Imaging Assembly (AIA) instrument on board the Solar Dynamics Observatory. We confirm that the QPPs with the shortest period of 24 s were not of an artifact produced by the Nyquist frequency of the AIA 12 s cadence. The QPPs in the three loop sections were interconnected and closely associated with the flare. The detected perturbations propagated along the loops at speeds of 65-200 km s(-1), close to those of acoustic waves in them. The loops were made up of many bright blobs arranged in alternating bright and dark changes in intensity (spatial periodical distribution) with the wavelengths 2.4-5 Mm (as if they were magnetohydrodynamic waves). Furthermore, in the time-distance diagrams, the detected perturbation wavelengths of the QPPs are estimated to be similar to 10 Mm, which evidently do not fit the above ones of the spatial periodic distributions and produce a difference of a factor of 2-4 with them. It is suggested that the short QPPs with periods P 60 s were the higher (e. g., > 2nd) harmonics of slow magnetoacoustic waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.