Abstract
A novel near-field optical microscope based on a parabolic mirror is used for recording high-resolution tip-enhanced photoluminescence (PL) and Raman images with unprecedented sensitivity and contrast. The measurements reveal small islands on the Au surface with dimensions of only a few nanometres with locally enhanced Au PL. These islands appear as nanometre-sized hot spots in tip-enhanced Raman microscopy when benzotriazole molecules adsorbed on the Au surface serve as local sensors for the optical field. The spectra show that localized plasmons are the cause of both the locally enhanced Au PL and enhanced Raman scattering. This finding suggests that the dispersive background in the surface-enhanced Raman spectra can be explained simply by the enhanced Au PL in the gap. Furthermore, our results show that the surface flatness must be better than 1 nm, to provide an optically homogeneous substrate for near-field enhanced PL and Raman spectroscopy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.