Abstract

In modern biology, most optical imaging technologies are applied to two-dimensional cell culture systems. However, investigation of physiological context requires specimens that display the complex three-dimensional (3D) relationship of cells that occurs in tissue sections and in naturally developing organisms. The imaging of highly scattering multicellular specimens presents a number of challenges, including limited optical penetration depth, phototoxicity, and fluorophore bleaching. Light-sheet-based fluorescence microscopy (LSFM) overcomes many drawbacks of conventional fluorescence microscopy by using an orthogonal/azimuthal fluorescence arrangement with independent sets of lenses for illumination and detection. The specimen is illuminated from the side with a thin light sheet that overlaps with the focal plane of a wide-field fluorescence microscope. Optical sectioning and minimal phototoxic damage or photobleaching outside a small volume close to the focal plane are intrinsic properties of LSFM. The principles of LSFM are implemented in the single (or selective) plane illumination microscope (SPIM). Madin-Darby canine kidney (MDCK) cysts grown in extracellular matrix (ECM) hydrogels provide a useful model system for studies of 3D cell biology. Here, we describe protocols for growing MDCK cysts within 3D type I collagen or reconstituted basement membrane (Matrigel) and for imaging these cysts by SPIM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.