Abstract

Water freezes into various phases of ice under different cryogenic temperatures and pressure conditions, such as ice Ih and ice XI at normal pressure. Vibrational imaging with high spectral, spatial, and polarization resolutions could provide detailed information on ice, including the phases and crystal orientations at the microscopic level. Here, we report in situ stimulated Raman scattering (SRS) imaging of ice to analyze the vibrational spectral changes of the OH stretching modes associated with the phase transition between ice Ih and ice XI. In addition, polarization-resolved measurements were performed to reveal the microcrystal orientations of the two phases of ice, with the spatial-dependent anisotropy pattern indicating the inhomogeneous distribution of their orientations. Furthermore, the angular patterns were theoretically explained by third-order nonlinear optics with the known crystal symmetries of the ice phases. Our work may provide new opportunities to investigate many intriguing physical chemistry properties of ice under low-temperature conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call