Abstract

Carrier-doped semiconductor nanocrystals (NCs) offer strong plasmonic responses at frequencies beyond those accessible by conventional plasmonic nanoparticles. Like their noble metal analogues, these emerging materials can harness free space radiation and confine it to the nanoscale but at resonance frequencies that are natively infrared and spectrally tunable by carrier concentration. In this work we combine monochromated STEM-EELS and theoretical modeling to investigate the capability of colloidal indium tin oxide (ITO) NC pairs to form hybridized plasmon modes, providing an additional route to influence the IR plasmon spectrum. These results demonstrate that ITO NCs may have greater coupling strength than expected, emphasizing their potential for near-field enhancement and resonant energy transfer in the IR region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.